
W H I T E P A P E R

w w w . s p e e d s c a l e . c o m© 2 0 2 1 S p e e d s c a l e

Traffic replay
from the future:
Forecast latency, throughput
and headroom before every deploy

Whitepaper - February 2021

Nate Lee

Co-Founder & VP of Sales,

Speedscale

• Current techniques for achieving application quality at scale

• Why ensuring quality at scale is difficult

• Why progressive SRE techniques won’t work for some applications and industries

• How Speedscale works

• Benefits and Use Cases for automated service replay and forecasts

• Run traffic replays for gated checks within CI/CD automation

In this whitepaper, you will learn...

Introduction

While the adoption of cloud infrastructure and platforms continues growing at a rapid pace,

delivering highly performant, stable applications in the cloud comes with its own set of challenges.

Enterprises are adding new nodes and microservices with every sprint, and more API integrations and
interdependencies to keep up with the features customers demand -- lest they abandon them for a

nimbler competitor.

The world has seen massive changes in how products are delivered to market, from ecommerce, to

SaaS-based applications, and ubiquitous mobility. An omnichannel go-to-market is now par for the

course, and customers expect flawless application performance, from any device or location. World
events like COVID19 have only driven more employees to work from home while forcing companies to
lean even harder on their digital capabilities.

All of these pressures build up to an enormous stress test on the applications we depend on. Simply

‘moving to cloud’ isn’t enough to meet scale and performance demands, when highly complex modern

applications are put on a high-speed release train to production.

While distributed, modularized components of an application enable rapid iteration of well-defined
functions, the communication and contracts between them have to be considered carefully. A

breakdown in communication always has the potential to grind the entire system to a halt.

With entire economies based on digital presence, the stakes for
performance and uptime have never been higher.

W H I T E P A P E R

w w w . s p e e d s c a l e . c o m© 2 0 2 1 S p e e d s c a l e

1

TRAFFIC REPLAY FROM THE FUTURE

Application Quality at Scale: Current Techniques

Infrastructure automation has grown in a big way, with server images, functions, and containers
proliferating throughout IT. Managed workloads and pipelines are needed to streamline application
deployment onto newer elastically scaling, ephemeral nodes in new cloud-native architectures.

Layer in a high rate of change between so many nodes, and DevOps teams encounter mind-boggling
complexity in assuring functional integrity, secure operations and performance at scale.

The State of the Art in Testing Isn’t Always Keeping Up
Software testing has come a long way since test-driven development and early UI-oriented testing tools
were introduced. Agile teams now commonly automate unit tests, regression tests and performance

tests as part of the software delivery pipeline. That’s wonderful.

As the software lifecycle accelerates, complexity starts to break down the reliability of test automation

itself, especially at the point of any change -- any next deployment, any spike in the volume of incoming

requests, any variability in data returning from downstream services.

It’s hard to get all of the resources aligned for a definitive test run for a node that is under constant
change, much less all of the components and data needed to validate it. Test suites are vital to each

release, but get fractured between releases, causing lots of rework while making test results harder to

trust.

So how have we adapted to this shifting technological landscape?
By using the same technology we used to test monoliths,

client-server and SOA systems -- of course.

Unit testing, end-to-end UI tests and manual testing are the standard. Yet we know from the 2019 State
of DevOps Report by DORA that “... the types of incidents that bring down production systems are often
caused by interactions between components…” when unit tests are meant to catch problems with the

logic of a unit of code in isolation.

End-to-end tests can catch defects of an entire application once a UI is completed. However many APIs,
databases, and event queues the system under test interacts with don’t have a UI available for such
a test at all. Lastly, the vast majority of quality automation still requires an author to get things rolling.

Someone has the arduous task of “File > Create New Test Case” for all hotpaths and edge cases. Let’s
not forget maintaining all these tests for regression, performance and exploratory testing uses.

W H I T E P A P E R

w w w . s p e e d s c a l e . c o m© 2 0 2 1 S p e e d s c a l e

2

TRAFFIC REPLAY FROM THE FUTURE

SREs and Canary Deploys
To answer the need for assurance beyond what testing can provide, progressive development shops

started releasing new application features to a much smaller set of users with a limited blast radius.

Canary releases, feature flags and blue/green deployments are attempts at understanding application
quality while affecting as few users as possible with a bug or outage.

Monitoring tools are essential to pick up after such releases as well, discovering small problems in
deployment before they become big. Ideally, an impending production outage would trigger the
monitor to send threshold alerts, turning these leading indicators over to an SRE (Site Reliability

Engineer) for issue resolution before more canary deploys are rolled out to larger and larger audiences.

Once an app is 100% deployed, SRE’s and engineers can breathe a sigh of relief -- but unfortunately,
continuously delivered software is never really 100% deployed.

While the Googles and Netflixes of the world embrace SRE principles as the way to rapidly deploy at
scale, not all companies have hordes of uber-skilled SRE’s on call to triage and break-fix emerging
problems in production. Many industries can’t afford to employ this strategy at all. Fintech, Healthcare,
and Government are examples of highly regulated verticals with sensitive data and systems that require

a minimum of disruption, and they are known for a low tolerance of failure.

The current state of the art in testing combined with the number of
services, connection points, and rate of change in modern application

delivery environments makes it a near-certainty that even the most
detail-oriented organization will miss critical flaws.

W H I T E P A P E R

w w w . s p e e d s c a l e . c o m© 2 0 2 1 S p e e d s c a l e

3

TRAFFIC REPLAY FROM THE FUTURE

Solution: How Speedscale works

Uncovering and fixing defects in your code well before customers can find them is the ultimate goal.
While this sounds obvious, many organizations have fallen into the trap of thinking bugs are OK, so long

as we can react to them quickly. Somehow, war rooms, being “on-call” and firefighting issues on the
weekends has become the norm -- and so has poor morale among Dev and Ops teams subjected to it.
Due to rapid release expectations and application complexity, this problem is not going away anytime
soon.

Observe, Analyze, Replay
Replaying traffic unlocks a variety of best practices -- chiefly, validating application quality early and
often. With the rise of 2-pizza engineering teams where developers are responsible for their code from
start-to-finish, any work that doesn’t contribute toward delivering valuable functionality for customers
-- or toil -- is the enemy.

By replaying previously observed traffic
against a changing system, engineers are able

to understand how their changes will likely

perform in production. They can receive instant

metrics around the SRE’s 4 Golden Signals

(latency, throughput, saturation and error rate)

all before deploying a single line of code to

production.

Traffic by its nature contains three ingredients
that are critical to validating proper function

of new code. These ingredients are: 1) the
transaction; 2) its dependencies; and 3) the
data itself.

Organizations tend to focus on quality automation of test transactions (1) and soon realize they lack
ready environments/dependencies (2) to run the automation regularly. If they have laid the virtual
groundwork to reliably automate the provisioning of (1) and (2), then a lack of valid test data (3)
becomes the bottleneck.

Speedscale uses traffic to understand how your application
is invoked, what dependencies it needs (so it can mock them),

with all the proper scenario data in place.

W H I T E P A P E R

w w w . s p e e d s c a l e . c o m© 2 0 2 1 S p e e d s c a l e

4

TRAFFIC REPLAY FROM THE FUTURE

Listen and Isolate your Service: The ‘Sandwich’
Speedscale’s footprint is similar to a monitoring tool. Lightweight speedscale agents in your container or

Kubernetes node listen to traffic and use an analyzer to process inbound and outbound data. If agents
are not possible in an environment, API gateways, log files, traffic captures (PCAPs) and service meshes
offer other possible forms of data ingest.

Once connected, Speedscale parses the data and provides replayable Docker containers that can be
provisioned as a traffic generator. If utilizing our agent, Speedscale will automatically recognize and
model backend dependencies needed for replay.

W H I T E P A P E R

w w w . s p e e d s c a l e . c o m© 2 0 2 1 S p e e d s c a l e

5

TRAFFIC REPLAY FROM THE FUTURE

Figure 1. Record traffic and dependencies for replay

Figure 2. Isolate and performance test any part of your app

Generator Responder

Replay
Requests

Intelligent
Responses

Your App

Traffic Snapshot

Snapshot Data

By mocking necessary dependencies, and invoking traffic replays,
Speedscale is able to ‘sandwich’ your app with testability, providing

isolation for validating the performance of your microservice monolith.
Exercising new code with controls on either side (upstream and

downstream) eliminates a lot of the uncertainty and noise typically
found in staging environments.

Benefits

Replaying traffic is not a brand new concept in general and there are a few open source tools that can
capture transactions and data at certain layers, as well as several commercial vendor solutions that

combine continuous testing and service virtualization to eliminate constraints.

However, most of these approaches are still too brittle, requiring scripting to set up and maintain test

suites and data, which breaks down at the breakneck pace of change required for continuous delivery

into cloud environments.

Speedscale was built for the modern age of containerization and microservices, meaning we can

capture and replay inbound and outbound traffic at the API layer, or using Kubernetes as a self-
contained reference architecture for deployments onto any Hybrid IT infrastructure.

W H I T E P A P E R

w w w . s p e e d s c a l e . c o m© 2 0 2 1 S p e e d s c a l e

6

TRAFFIC REPLAY FROM THE FUTURE

Figure 3. Exercise your app at will with Speedscale with realistic traffic and valid data

Generator

There are several merits to replaying traffic in this way:
• Generating replayable traffic takes only a few minutes with dramatically higher code coverage
• Traffic contains the transaction, dependencies and data, which can be parameterized for different

scenarios

• Traffic can check integration, functional integrity, regressions or be multiplied for performance and
stability tests

• Traffic can forecast relevant quality metrics before deployment, in line with automated software
delivery pipelines

• Repeated replays can allow for experiments, tuning, comparisons and parity checks (eg. different

clouds, processors, libraries, vendor software, etc).

• Reduced pre-production lab infrastructure and cloud consumption costs, as Speedscale

environments are spun up only when called on by automated pipelines and discarded immediately

after each scenario is run.

Pre-production performance environments should actually contribute
more value to your organization and its software customers over time,

not create an annuity teams have to constantly upkeep.

FAQ
What kind of traffic can you replay?
Currently we can replay HTTP, gRPC, S3, MINIO, and MongoDB with new protocols being added all the
time.

How could your mocks possibly simulate our complicated backends?
Speedscale does not try to build a mock of your entire service. We only need to supply the responses

your service requires during a set span of time. Remember, we also know what transactions are being

sent into your service during that timespan as well.

What if you record sensitive data?
We can integrate with a DLP solution to scan, identify and mask sensitive data as we analyze the traffic
for replay. We also have custom rules you can establish for additionally shielding proprietary or sensitive

data from observation.

How manual/automated is generating traffic?
Once you select a timespan of traffic according to the replay fidelity you need, depending on whether it
is minutes/hours, the traffic replay generation takes seconds or minutes.

W H I T E P A P E R

w w w . s p e e d s c a l e . c o m© 2 0 2 1 S p e e d s c a l e

7

TRAFFIC REPLAY FROM THE FUTURE

w w w . s p e e d s c a l e . c o m

About Speedscale
Continuous Resiliency from Speedscale gives you the power of a virtual ‘SRE-bot’ working inside your

automated software release pipeline. Forecast the real-world conditions of every build, and know you’ll

hit your SLO before you go to production.

Feed Speedscale traffic (or let us listen to your app) and we’ll turn it into traffic snapshots and
corresponding mock containers. Insert your own service container in between for a robust sanity check
every time you commit.

Understand latency, throughput, headroom, and errors -- before you release! The best part? You don’t
have to write any scripts or talk to anyone! To learn more and request a demo, visit www.speedscale.
com.

W H I T E P A P E R

© 2 0 2 1 S p e e d s c a l e

8

TRAFFIC REPLAY FROM THE FUTURE

Sample use cases for Speedscale

Run in Generator-only
mode to predict how
your app behaves
under peak load

Compare 1
environment’s traffic
(e.g., EC2) vs. your
new K8s cluster

Run Responder-only
mode to simulate
unavailable backends
(e.g., 3rd parties)

Run traffic analysis
for high level metrics
(with no replay)

Run Speedscale
isolation for traffic
replay, fix & tune
your APIs, then replay

Run traffic replays for
gated checks within
CI/CD automation

